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Abstract—With the vast development of computational 

technology and the increasing prevalence of massive cyber-

attacks, cryptosystems have become increasingly essential. 

One of its examples is Rivest-Shamir-Adleman (RSA) 

cryptosystems, which has remained a robust solution for 

decades. However, due to quantum computing developments, 

RSA becomes unsafe. The discoveries of LLL algorithms to 

reduce lattice’s basis and Minkowski’s Theorem for shortest 

vector problem, making RSA more vulnerable. This paper 

investigates the theory behind and its implementation, such 

as encryption and decryption process. Experimental results 

demonstrate the effectiveness of RSA and Minkowski’s 

Theorem, showcasing the time difference between general 

number field sieve and decrypt using lattice basis reduction 

with Minkowski’s Theorem. 
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I.   INTRODUCTION 

With the recent development of computational 

technology, various types of cyber-attacks had been done 

massively. This condition increases the need for methods 

that can protect data effectively, one of which is through 

the cryptosystem concept. Cryptosystems are designed to 

maintain the confidentiality, integrity and authenticity of 

information in various forms of modern communication. 

One of the important innovations in the field of 

cryptography is the discovery of the RSA algorithm which 

was discovered by three people: Rivest, Shamir, and 

Adleman in 1977. RSA is an asymmetric type of 

cryptosystem that uses 2 keys, a public key and a private 

key. These two keys were created using the concept of 

number theory and modular arithmetic with very large 

prime numbers to make the decryption process more 

complex.  

However, due to the development of post-quantum 

computing, RSA then be considered as an unsafe 

cryptosystem. Quantum computers possess the capability 

to perform complex calculations at speeds unimaginable by 

classical computers. This includes solving the integer 

factorization problem, which is the mathematical 

foundation of RSA. With its capability, quantum 

computers could efficiently break RSA encryption, 

rendering it ineffective for securing data. 

Moreover, in the pre-quantum era, certain advancements 

in mathematical algorithms, like the Lenstra-Lenstra-

Lovász (LLL) algorithm, have already demonstrated 

vulnerabilities within RSA's mathematical structure. While 

LLL does not directly break RSA, it serves as a precursor 

to understanding how lattice-based attacks can exploit 

specific weaknesses in RSA’s cryptosystems. 

This paper aims to provide a comprehensive exploration 

of the application of LLL algorithm and Minkowski’s 

theorem to break RSA cryptosystem, especially with RSA 

that uses small private key in its encryption system. To 

check the efficacy of the experiment, we calculated the 

execution time in the decryption process. 

The paper has been organized as follows: Section 2 

provides the theoretical framework, Section 3 provides the 

cryptosystem scheme, Section 4 provides the 

implementation, Section 5 provides the test and the result, 

and Section 6 provides the conclusion followed by 

references. 

 

II.  THEORETICAL FRAMEWORK 

A. Cryptosystem 

Cryptosystem is an entire set of cryptographic systems 

needed necessary for the provision of a certain security 

services, such as data confidentiality and hiding data’s 

crucial information (encryption-decryption process). This 

can also be defined as converting plaintext to ciphertext to 

encrypt and decrypt message securely. 

In general, cryptosystem consists of three main 

algorithms: key generation, encryption, and decryption. 

The basic model of cryptosystem is depicted in the figure 

below: 
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Fig. 2.1 Basic cryptosystem model 

(Source: Adapted from [4]) 

 

Typically, there are two kinds of cryptosystems based on 

its key-generation process; the first kind of the 

cryptosystem is symmetric key cryptography, and the 

second kind of the cryptosystem is asymmetric key 

cryptography. 

Symmetric key cryptography is a cryptography process 

that uses same keys for encryption and decryption process. 

A well-known example that uses this cryptosystem are 

Advanced Encryption Standard (AES), Data Encryption 

Standard (DES), International Data Encryption Algorithm 

(IDEA), Blowfish, and Rivest Cipher. Example for this 

encryption can be seen in Fig 2.2. 

 
Fig. 2.2 Basic symmetric key cryptography model 

(Source: Adapted from [2]) 

 

Asymmetric key cryptography is a cryptography process 

that uses different keys for encryption and decryption 

process. A well-known example that uses this 

cryptosystem are Rivest-Shamir-Adleman (RSA), Elliptic 

Curve Cryptography (ECC), Digital Signature Algorithm 

(DSA), Diffie-Hellman, and Certificate Authorities (CAs). 

Example for this encryption can be seen in Fig 2.3. 

 
Fig. 2.3 Basic asymmetric key cryptography model 

(Source: Adapted from [3]) 

 

B. Rivest-Shamir-Adleman (RSA) 

Rivest-Shamir-Adleman (RSA) algorithm is one of the 

cryptosystems that uses asymmetric key to encrypt and 

decrypt the plaintext and the ciphertext. This algorithm is 

named after its founder: Ron Rivest, Adi Shamir, and Len 

Adleman in 1977. 

 

 
Fig 2.4 (From left to right) Adi Shamir, Ron Rivest, 

and Len Adleman 

(Source: Adapted from [5]) 

 

a. Encryption 

The encryption process of this algorithm is quite simple, 

first pick two primes, or namely p and q. The size of this 

primes is freely chosen, but it’s recommended to pick big 

primes to make the decryption process more challenging 

and difficult. 

After picking the two primes number (p and q), we can 

calculate the modulus for the encryption, or namely N. The 

N value can be calculated using the equations below: 

 

𝑁 = 𝑝𝑞 … (1) 

 

With N is the modulus value, and pq is the product of the 

two primes number. Notice that, if we choose big size of 

integer for the p and q values, the n size is increased 

significantly too. 

After we calculate N value, the next step is to pick the 

public exponent or sometimes called the encryption key 

value (e value). In general, we can pick 65537 (or 0x10001 

in hexadecimal representation) to be the public exponent. 

This value picked because of its common compromise 

between being high, and its cost of raising to the e-th 

power. But keep in mind that the e value must be coprime 

with the Euler’s totient value that usually represent in phi 

(𝜑) symbol (this totient value will be discussed in the 

decryption part). 

The final step of the RSA encryption process is to 

convert plaintext to ciphertext, or namely c. To calculate 

the c value, we must understand what number theory and 

modular arithmetic is. The c value can be calculated using 

the equations below: 

 

𝑐 = 𝑚𝑒  𝑚𝑜𝑑 𝑁 … (2) 

 

With m is the plaintext representation in its integer 

value. After we calculate the c value, we can share the N, 

e, and c value to the receiver. 

 

b. Decryption 
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The decryption process of this algorithm is quite 

challenging, first, we have to search for prime factors from 

N value (see eq. (1)), if the encryption process is using 

conventional RSA, we can use Pollard’s Rho algorithm to 

search for the prime factors from N (or we’re searching for 

p and q values). The algorithm can be seen in Fig 2.5. 

 
Figure 2.5 Pollard’s Rho Algorithm 

(Source: writer’s archive) 

 

After getting the p and q values, calculate the Euler’s 

totient, Euler’s totient is a function to determine how much 

numbers are coprime relative to the N value (or suppose 

that the number is k, 1 ≤ 𝑘 ≤ 𝑁, greatest common divisor 

of k and N must be equal to 1).  

Euler’s totient is multiplicative function, meaning that if 

we have two coprime numbers, for example a and b, then: 

 

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) … (3) 

 

If n-set of numbers ({𝑎1, 𝑎2, … , 𝑎𝑛}) are pair-wisely 

coprime, then: 

 

𝜑 (∏ 𝑎𝑖

𝑛

𝑖=1

) = ∏ 𝜑(𝑎𝑖)

𝑛

𝑖=1

… (4) 

 

From eq. (3), if b is a prime number, then 𝜑(𝑏) = 𝑏 −
1. Notice that a and b are different prime numbers because 

a and b is coprime. From these results, we can get: 

 

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) 

𝜑(𝑎𝑏) = (𝑎 − 1)(𝑏 − 1) … (5) 

 

With 𝜑(𝑎𝑏) is the Euler's totient value that we’ll use to 

calculate the private key. 

After calculating the Euler’s totient value, we can 

calculate the private key value, namely d. To calculate d, 

we will use the equivalencies below: 

 

𝑑 ≡ 𝑒−1 𝑚𝑜𝑑 (𝜑(𝑁)) … (6) 

 

From eq. (6), calculate d using modular inverse concept, 

after we get the d value, we can convert ciphertext to its 

plaintext using this equation below:  

 

𝑚 = 𝑐𝑑  𝑚𝑜𝑑 𝑁 … (7) 

 

With c is the ciphertext representation in its integer 

value. After we calculate the m value, convert it to its string 

value to get the plaintext. 

 

C. Lenstra-Lenstra-Lovász (LLL) Lattice Basis 

Reduction 

Lattice can be described by a basis B which contains 

linearly independent basis vectors ({𝑏1, 𝑏2, … , 𝑏𝑟}) with 

𝑏𝑖 ∈ ℝn and r is the lattice’s rank. The lattice can be 

represented as: 

𝐿 = 𝐿(𝐵) = {∑ 𝑎𝑖𝑏𝑖   |  𝑎𝑖 ∈ ℤ

𝑟

𝑖=1

} … (8) 

 

 
Figure 2.6 A 2-dimensional lattice  

Source: Adapted from [1]  

 

From that definition, we can reduce the lattice by take 

an arbitrary lattice’s basis and transform it to another basis 

that has shorter and has more orthogonal vectors. 

To begin, suppose that we have two matrixes, 𝑇𝑖,𝑗 and 

𝐿𝑖,𝑗(𝑘) 

 
Figure 2.7 𝑇𝑖,𝑗 and 𝐿𝑖,𝑗(𝑘) Matrix 

Source: Adapted from [1] 

 

If we left multiplying a basis with 𝑇𝑖,𝑗, it will yield a new 

basis with swapped 𝑖 and 𝑗 basis vectors. If we left 

multiplying a basis with 𝐿𝑖,𝑗(𝑘), it will yield a new basis 

with the 𝑗𝑡ℎ basis added k times to 𝑖𝑡ℎ basis. These two 

transformations will be used in the Lenstra-Lenstra-Lovász 

(LLL) algorithm. 

The Lenstra-Lenstra-Lovász (LLL) algorithm starts with 

taking the lattice basis and computing orthogonal basis 

with Gram-Schmidt methods. 
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{

𝑏𝑖
∗ = 𝑏𝑖 ,                                                      𝑖 = 1

𝑏𝑖
∗ = 𝑏𝑖 − ∑ 𝜇𝑖,𝑗𝑏𝑗

∗
𝑖−1

𝑗=1
,                1 < 𝑖 ≤ 𝑛

     𝜇𝑖,𝑗 =
(𝑏𝑖 , 𝑏𝑗

∗)

(𝑏𝑗
∗, 𝑏𝑗

∗)
 

 

With 𝑏𝑖
∗ is the orthogonal vector and 𝜇𝑖,𝑗 is the 

coefficient. 

After getting the orthogonal basis vectors, we can do the 

LLL algorithm. The algorithm can be seen in Fig 2.8. 

 
Figure 2.8 LLL Algorithm 

(Source: Adapted from [1]) 

 

Notice there are two conditions to be fulfilled. The first 

condition is size reduction. This condition related to the 

basis vectors length that can be represented as |𝜇𝑖,𝑗| ≤
1

2
 for 

all 𝑖 > 𝑗. 

The second condition is Lovász condition, Lovász states 

that lattice is reduced if (𝛿 − 𝜇𝑖+1,𝑖
2 )||𝑏𝑖

∗||
2

≤ ||𝑏𝑖+1
∗ ||

2
 for 

all 1 ≤ 𝑖 ≤ 𝑛 − 1, with 𝛿 ∈ (0.75, 1). 

 

D. Minkowski’s Theorem 

In 1889, Hermann Minkowski, A German 

Mathematician, states that every convex set in n-

dimensional spaces (ℝn) that symmetric with the origin 

coordinate and has volume greater than 2𝑛, contains a non-

zero integer points. This means that a Minkowski’s point 

is in the infinite ℤ𝑛 space excluding its origin point. 

 

 
Figure 2.9 A Minkowski’s set in 2-dimensional space 

Source: (https://www.anyrgb.com/en-clipart-

2haql#google_vignette) 

 

Later then, he introduces the extended version of the 

theorem, Minkowski’s First Theorem. This theorem gives 

an upper bound for the length of the shortest non-zero 

vector. 

First, we have to understand successive minima of a 

lattice. Let n be the lattice’s rank, and L be a full-rank n-

dimensional lattice, for 𝑖 ∈ {1,2, … , 𝑛}, the 𝑖𝑡ℎ successive 

minima of L (𝜆) is the smallest r so that L has i linearly 

independent vectors of biggest length r. So, Minkowski, in 

his first theorem, propose that: 

 

𝜆(𝐿) ≤ √𝑛| det(𝐿) |
1
𝑛 … (9) 

 

The example of this theorem can be seen in Fig 2.9. 

 
Figure 2.10 Successive minima and shortest non-zero 

vector of a lattice 

(Source: Adapted from [1]) 

 

III.   CRYPTOSYSTEM SCHEME 

A. Encryption 

The proposed encryption method begins with picking 

some random p and q numbers (or two random prime 

numbers) with 512 bits of size. Then, calculate N 

(modulus) with eq. (1). 

Notice that the size of N is very big (approximately 1024 

bits of size), making it harder and challenging to compute 

on the decryption process later. 

After choosing p and q and calculating N value, the next 

step is to calculate the Euler’s totient value with eq. (5). To 

make it harder to decrypt, we will separate the plaintext 

into two ciphertext and two public exponents (notice that 

we will have two private keys and two ciphertext from this 

scheme). Suppose we want to search for d1 (first private 

key), e1 (first public exponent), d2 (second private key), 

and e2 (second public exponent) values. First, take random 

d1 value, but make it 0.16 times smaller than the N size (so 

we have first private key with approximately 164 bits of 

size), then pick random e1 values from 1 to Euler’s totient 

value. After we get the d1 and e1 values, calculate ed1 with 

these equations below: 

 

𝑒𝑑1 = (𝑒1𝑑1) 𝑚𝑜𝑑 𝜑 … (10) 

 

After that, take random d2 value, but make it 0.16 times 

smaller than the N size (so we have first private key with 

approximately 164 bits of size), then calculate e2 with 

calculating factor from d2 and Euler’s totient value with 

extended Euclidean algorithm (egcd). After getting the e2, 

multiply it by (𝜑 + 1 − 𝑒𝑑1) 𝑚𝑜𝑑 𝜑. After we get the d2 

and e2 values, calculate ed2 with these equations below: 

 

𝑒𝑑2 = (𝑒2𝑑2) 𝑚𝑜𝑑 𝜑 … (11) 

 

The next step, is to assert if the conditions shown below 

is met: 
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𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑 … (12) 

 

If the conditions are met, the next step is to convert 

plaintext to its ciphertext, we have two ciphertext here, c1 

and c2. Calculate each ciphertext with eq. (2), after that, we 

can share the N, e1, c1, e2, c2 to the receiver. More detailed 

description provided in the implementation section. 

 

B. Decryption 

From the sender, we only get N, e1, c1, e2, c2 values, 

and from the encryption process, we know that 𝑑1, 𝑑2 <

𝑁0.16, 𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑, and plaintext (m) with 

𝑚 ≡ (𝑐1𝑑1𝑐2𝑑2) 𝑚𝑜𝑑 𝑁. 

Because of its private key are small (d1 and d2 is small), 

we can first assume that the vector produced is small and 

we can use smallest vector problem. First, extend eq. (12) 

first: 

𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑 

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘𝜑 

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘((𝑝 − 1)(𝑞 − 1)) 

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑝𝑞 − 𝑝 − 𝑞 + 1) 

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑝𝑞 − (𝑝 + 𝑞) + 1) 

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑁 − (𝑝 + 𝑞) + 1) 

𝑒1𝑑1 + 𝑒2𝑑2 − 𝑘𝑁 = 1 + 𝑘(−(𝑝 + 𝑞) + 1) … (13) 

 

From eq. (13), we can approximate each size of the 

components. 𝑝, 𝑞 = 512 bits; N = 1024 bits; d = 164 bits; e 

= 1024 bits; and k = 164 bits (from min(e,d)). 

Because of smallest vector problem, we can use LLL 

algorithm, first take 3 vector basis, the first basis is 𝑏1 =
(1,0, 𝑒1), the second basis is 𝑏2 = (0,1, 𝑒2), and the third 

basis is 𝑏3 = (0,0, −𝑁). This basis is adapted from the eq. 

(13) (or from the 𝑒1𝑑1 + 𝑒2𝑑2 − 𝑘𝑁 parts) and to keep 

maintaining the bits size too. 

After we take 3 basis, make the matrix representation of 

it: 

[
1 0 𝑒1

0 1 𝑒2

0 0 −𝑁

] 

 

Check the matrix with Minkowski’s first theorem (eq. 

9), we have 3-dimensional lattice, with |det(𝐿)| =

|(1)(1)(−𝑁)| = 𝑁, so we can approximate √𝑛| det(𝐿) |
1

𝑛 

bits size, that is 
|det(𝐿)| 𝑠𝑖𝑧𝑒

𝑛 𝑠𝑖𝑧𝑒
≈

1024

3
𝑏𝑖𝑡𝑠 ≈ 341 𝑏𝑖𝑡𝑠 

So, the inequality becomes: 

 

𝜆(𝐿) ≤ 341 𝑏𝑖𝑡𝑠 … (14) 

 

The 𝜆(𝐿) value is the 1 + 𝑘(−(𝑝 + 𝑞) + 1) value, we 

know that 𝑘 ≈ 164 bits and 𝑝 + 𝑞 ≈ 512 bits, so we can 

approximate the 𝜆(𝐿), that is 676 bits. The inequality 

becomes: 

  
676 𝑏𝑖𝑡𝑠 ≤ 341 𝑏𝑖𝑡𝑠 … (15) 

 

Which is false, so we have to scale the basis to make the 

Minkowski’s first theorem conditions are met. Suppose 

that we scale the basis with M, so the pre-LLL matrix will 

be: 

[
𝑀 0 𝑒1

0 𝑀 𝑒2

0 0 −𝑁

] 

 

Check the matrix with Minkowski’s first theorem (eq. 

9), we have 3-dimensional lattice, with |det(𝐿)| =
|(𝑀)(𝑀)(−𝑁)| = 𝑀2𝑁. Keep in mind that we have to 

make the √𝑛| det(𝐿) |
1

𝑛  bits size is greater or equal than 

676 bits. From this conditions, we can take 𝑀 = 2512 so 

the M size is 512 bits, calculate the size for the 

√𝑛| det(𝐿) |
1

𝑛, that is 
|det(𝐿)| 𝑠𝑖𝑧𝑒

𝑛 𝑠𝑖𝑧𝑒
≈

512+512+1024

3
𝑏𝑖𝑡𝑠 ≈

2048

3
𝑏𝑖𝑡𝑠 ≈ 682 𝑏𝑖𝑡𝑠, which finally satisfies the 

Minkowski’s conditions. 

After getting the pre-LLL matrix, reduce it by the LLL 

algorithm shown in Fig 2.8. After we get the reduced 

lattice, calculate the d1 and d2 values from the first row, 

the first value from the row is the d1 value and the second 

value from the row is the d2 value, but don’t forget to 

divide each d by M because we did scale the value by M 

before. 

Finally, we have all the value needed to decrypt the 

ciphertext. Calculate the plaintext value using these 

equivalencies below: 

 

𝑚 ≡ (𝑐1𝑑1𝑐2𝑑2) 𝑚𝑜𝑑 𝑁 … (16) 

 

Then, convert it to its string value to get the plaintext. 

 

IV.   IMPLEMENTATION 

This program is developed using Python as its primary 

programming language due to its simplicity and versatility 

in mathematical processing. The libraries included are 

Crypto.Util to help with RSA process, random to get the 

random primes, and time to calculate the time taken to 

encrypt or decrypt the message. 

This program also developed using Sage as its 

framework due to its efficiency and capability of handling 

big numbers and its calculations. Several limitations have 

been incorporated into the implementation to ensure its 

feasibility. The limitations are it can’t be done if the 

plaintext is too long due to the python constraints. 

The source code of this program can be accessed in 

appendix section. 
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A. Encryption 

 
Figure 4.1 Source code of egcd: encryption process 

(Source: writer’s archive) 

 

 
Figure 4.2 Source code of key generator: encryption 

process 

(Source: writer’s archive) 

 

 
Figure 4.3 Source code of chunk processor: encryption 

process 

(Source: writer’s archive) 

 

The encryption process is inspired by the SECCON 

2020 CTF “sharsable problem”. This source code 

implements the encryption process that had been 

mentioned in the cryptosystem scheme. Additionally, it 

incorporates an additional feature, chunk. Chunk used in 

this process to make the decryption process more efficient 

and avoid overflow when encrypting the plain text and 

saved it to txt file. The idea is, when the plain text input is 

more than 127 bytes, the program will separate it to 

different chunks, so it will handle the overflow in the 

process and make the decryption process more efficient. 

 

B. Decryption 

 
Figure 4.4 Source code of read file: decryption process 

(Source: writer’s archive) 
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Figure 4.5 Source code of lattice basis reduction: 

decryption process 

(Source: writer’s archive) 

 

 
Figure 4.6 Source code chunk decryption process 

(Source: writer’s archive) 

 

 

 

This source code implements the decryption process that 

had been mentioned in the cryptosystem scheme. 

Additionally, it incorporates an additional feature, 

execution time. Execution time used in this process to 

observe time changes corresponding to each test case 

variation. 

 

V.  TEST AND RESULT 

To test the implementation of the program, there would 

be 3 test cases used: short text, medium text, and long text. 

 

Table 5.1 Test Cases for Implementation 

Parameters Filename 

Test.txt Winter.txt Danger.txt 

types short medium Long 

chunks 1 2 4 

Size of 

number 

searched 

1024 bits 2048 bits 4096 bits 

 

For the test cases and the result, it also attached in the 

appendix section, the input file will be at the input folder. 

To compare the time needed to decode from lattice 

method, this paper used general number field sieve to 

compare the time needed to decrypt the ciphertext, the code 

used to calculate the sieve time is attached in the appendix 

section. 

This comparison is assumed we have computer that can 

do 3 × 109 operations per core, with 1000 cores inside the 

computer and with the program’s time complexity of 

𝐿(𝑛)  =  𝑒𝑥𝑝((𝑐 +  𝑜(1))(𝑙𝑛 𝑛)^(1/3)(𝑙𝑛 𝑙𝑛 𝑛)^(2/
3)). Furthermore, writer also calculate the improvements 

from sieve to lattice methods. The formula to calculate the 

improvements are  
𝑠𝑖𝑒𝑣𝑒

𝑙𝑎𝑡𝑡𝑖𝑐𝑒
(𝑠𝑒𝑐𝑜𝑛𝑑𝑠). 

 

Table 5.2 Results for Implementation 

Filename Time-

Lattice 

(seconds) 

Time-Sieve 

(seconds) 

Improvement 

(times) 

Test.txt 0.10 4.39 × 1013 4.39 × 1014 

Winter.txt 0.19 5.11 × 1022 5.79 × 1023 

Danger.txt 0.35 4.30 × 1034 8.57 × 1034 

 

Notice that if the plaintext gets longer, the time required 

will also increase, the time required with sieve methods 

will increase greatly, but the time required with lattice 

methods is not. So, with lattice methods, we can efficiently 

attack small private key RSA encryption in no time. 

 

VI.  CONCLUSION 

With Lenstra-Lenstra-Lovász algorithm and 

Minkowski’s theorem, we can simply attack RSA with 

small private key, searching for its prime factors using the 

reduced lattice form. LLL calculated the smallest possible 

vectors to search for the possible private key value, and 
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Minkowski’s first theorem make the bound for the LLL 

computation, so we can efficiently find the right vectors.  

With these methods, we can greatly reduce the time 

required to decrypt the encrypted plaintext from years to 

less than a seconds.  

This study lays the groundwork for further development. 

The current program developed is exclusively encrypt and 

decrypt small size of text. Furthermore, the program's 

limitation to certain file types, and plaintext size could be 

broadened, allowing for more extensive file and text size 

compatibility. 

 

VII.  APPENDIX 

The program that used in this paper can be seen in this 

link:  

https://github.com/Nayekah/Lattice 
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