
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of the Lenstra-Lenstra-Lovász (LLL)

Lattice Basis Reduction Algorithm and Minkowski's

Theorem to Optimize Small Private Key RSA

Decryption
Nayaka Ghana Subrata - 135230901
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523090@mahasiswa.itb.ac.id, nayakaghana39@gmail.com

Abstract—With the vast development of computational

technology and the increasing prevalence of massive cyber-

attacks, cryptosystems have become increasingly essential.

One of its examples is Rivest-Shamir-Adleman (RSA)

cryptosystems, which has remained a robust solution for

decades. However, due to quantum computing developments,

RSA becomes unsafe. The discoveries of LLL algorithms to

reduce lattice’s basis and Minkowski’s Theorem for shortest

vector problem, making RSA more vulnerable. This paper

investigates the theory behind and its implementation, such

as encryption and decryption process. Experimental results

demonstrate the effectiveness of RSA and Minkowski’s

Theorem, showcasing the time difference between general

number field sieve and decrypt using lattice basis reduction

with Minkowski’s Theorem.

Keywords—RSA, LLL, Minkowski, Cryptosystem.

I. INTRODUCTION

With the recent development of computational

technology, various types of cyber-attacks had been done

massively. This condition increases the need for methods

that can protect data effectively, one of which is through

the cryptosystem concept. Cryptosystems are designed to

maintain the confidentiality, integrity and authenticity of

information in various forms of modern communication.

One of the important innovations in the field of

cryptography is the discovery of the RSA algorithm which

was discovered by three people: Rivest, Shamir, and

Adleman in 1977. RSA is an asymmetric type of

cryptosystem that uses 2 keys, a public key and a private

key. These two keys were created using the concept of

number theory and modular arithmetic with very large

prime numbers to make the decryption process more

complex.

However, due to the development of post-quantum

computing, RSA then be considered as an unsafe

cryptosystem. Quantum computers possess the capability

to perform complex calculations at speeds unimaginable by

classical computers. This includes solving the integer

factorization problem, which is the mathematical

foundation of RSA. With its capability, quantum

computers could efficiently break RSA encryption,

rendering it ineffective for securing data.

Moreover, in the pre-quantum era, certain advancements

in mathematical algorithms, like the Lenstra-Lenstra-

Lovász (LLL) algorithm, have already demonstrated

vulnerabilities within RSA's mathematical structure. While

LLL does not directly break RSA, it serves as a precursor

to understanding how lattice-based attacks can exploit

specific weaknesses in RSA’s cryptosystems.

This paper aims to provide a comprehensive exploration

of the application of LLL algorithm and Minkowski’s

theorem to break RSA cryptosystem, especially with RSA

that uses small private key in its encryption system. To

check the efficacy of the experiment, we calculated the

execution time in the decryption process.

The paper has been organized as follows: Section 2

provides the theoretical framework, Section 3 provides the

cryptosystem scheme, Section 4 provides the

implementation, Section 5 provides the test and the result,

and Section 6 provides the conclusion followed by

references.

II. THEORETICAL FRAMEWORK

A. Cryptosystem

Cryptosystem is an entire set of cryptographic systems

needed necessary for the provision of a certain security

services, such as data confidentiality and hiding data’s

crucial information (encryption-decryption process). This

can also be defined as converting plaintext to ciphertext to

encrypt and decrypt message securely.

In general, cryptosystem consists of three main

algorithms: key generation, encryption, and decryption.

The basic model of cryptosystem is depicted in the figure

below:

mailto:113523090@mahasiswa.itb.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig. 2.1 Basic cryptosystem model

(Source: Adapted from [4])

Typically, there are two kinds of cryptosystems based on

its key-generation process; the first kind of the

cryptosystem is symmetric key cryptography, and the

second kind of the cryptosystem is asymmetric key

cryptography.

Symmetric key cryptography is a cryptography process

that uses same keys for encryption and decryption process.

A well-known example that uses this cryptosystem are

Advanced Encryption Standard (AES), Data Encryption

Standard (DES), International Data Encryption Algorithm

(IDEA), Blowfish, and Rivest Cipher. Example for this

encryption can be seen in Fig 2.2.

Fig. 2.2 Basic symmetric key cryptography model

(Source: Adapted from [2])

Asymmetric key cryptography is a cryptography process

that uses different keys for encryption and decryption

process. A well-known example that uses this

cryptosystem are Rivest-Shamir-Adleman (RSA), Elliptic

Curve Cryptography (ECC), Digital Signature Algorithm

(DSA), Diffie-Hellman, and Certificate Authorities (CAs).

Example for this encryption can be seen in Fig 2.3.

Fig. 2.3 Basic asymmetric key cryptography model

(Source: Adapted from [3])

B. Rivest-Shamir-Adleman (RSA)

Rivest-Shamir-Adleman (RSA) algorithm is one of the

cryptosystems that uses asymmetric key to encrypt and

decrypt the plaintext and the ciphertext. This algorithm is

named after its founder: Ron Rivest, Adi Shamir, and Len

Adleman in 1977.

Fig 2.4 (From left to right) Adi Shamir, Ron Rivest,

and Len Adleman

(Source: Adapted from [5])

a. Encryption

The encryption process of this algorithm is quite simple,

first pick two primes, or namely p and q. The size of this

primes is freely chosen, but it’s recommended to pick big

primes to make the decryption process more challenging

and difficult.

After picking the two primes number (p and q), we can

calculate the modulus for the encryption, or namely N. The

N value can be calculated using the equations below:

𝑁 = 𝑝𝑞 … (1)

With N is the modulus value, and pq is the product of the

two primes number. Notice that, if we choose big size of

integer for the p and q values, the n size is increased

significantly too.

After we calculate N value, the next step is to pick the

public exponent or sometimes called the encryption key

value (e value). In general, we can pick 65537 (or 0x10001

in hexadecimal representation) to be the public exponent.

This value picked because of its common compromise

between being high, and its cost of raising to the e-th

power. But keep in mind that the e value must be coprime

with the Euler’s totient value that usually represent in phi

(𝜑) symbol (this totient value will be discussed in the

decryption part).

The final step of the RSA encryption process is to

convert plaintext to ciphertext, or namely c. To calculate

the c value, we must understand what number theory and

modular arithmetic is. The c value can be calculated using

the equations below:

𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑁 … (2)

With m is the plaintext representation in its integer

value. After we calculate the c value, we can share the N,

e, and c value to the receiver.

b. Decryption

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

The decryption process of this algorithm is quite

challenging, first, we have to search for prime factors from

N value (see eq. (1)), if the encryption process is using

conventional RSA, we can use Pollard’s Rho algorithm to

search for the prime factors from N (or we’re searching for

p and q values). The algorithm can be seen in Fig 2.5.

Figure 2.5 Pollard’s Rho Algorithm

(Source: writer’s archive)

After getting the p and q values, calculate the Euler’s

totient, Euler’s totient is a function to determine how much

numbers are coprime relative to the N value (or suppose

that the number is k, 1 ≤ 𝑘 ≤ 𝑁, greatest common divisor

of k and N must be equal to 1).

Euler’s totient is multiplicative function, meaning that if

we have two coprime numbers, for example a and b, then:

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) … (3)

If n-set of numbers ({𝑎1, 𝑎2, … , 𝑎𝑛}) are pair-wisely

coprime, then:

𝜑 (∏ 𝑎𝑖

𝑛

𝑖=1

) = ∏ 𝜑(𝑎𝑖)

𝑛

𝑖=1

… (4)

From eq. (3), if b is a prime number, then 𝜑(𝑏) = 𝑏 −
1. Notice that a and b are different prime numbers because

a and b is coprime. From these results, we can get:

𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏)

𝜑(𝑎𝑏) = (𝑎 − 1)(𝑏 − 1) … (5)

With 𝜑(𝑎𝑏) is the Euler's totient value that we’ll use to

calculate the private key.

After calculating the Euler’s totient value, we can

calculate the private key value, namely d. To calculate d,

we will use the equivalencies below:

𝑑 ≡ 𝑒−1 𝑚𝑜𝑑 (𝜑(𝑁)) … (6)

From eq. (6), calculate d using modular inverse concept,

after we get the d value, we can convert ciphertext to its

plaintext using this equation below:

𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑁 … (7)

With c is the ciphertext representation in its integer

value. After we calculate the m value, convert it to its string

value to get the plaintext.

C. Lenstra-Lenstra-Lovász (LLL) Lattice Basis

Reduction

Lattice can be described by a basis B which contains

linearly independent basis vectors ({𝑏1, 𝑏2, … , 𝑏𝑟}) with

𝑏𝑖 ∈ ℝn and r is the lattice’s rank. The lattice can be

represented as:

𝐿 = 𝐿(𝐵) = {∑ 𝑎𝑖𝑏𝑖 | 𝑎𝑖 ∈ ℤ

𝑟

𝑖=1

} … (8)

Figure 2.6 A 2-dimensional lattice

Source: Adapted from [1]

From that definition, we can reduce the lattice by take

an arbitrary lattice’s basis and transform it to another basis

that has shorter and has more orthogonal vectors.

To begin, suppose that we have two matrixes, 𝑇𝑖,𝑗 and

𝐿𝑖,𝑗(𝑘)

Figure 2.7 𝑇𝑖,𝑗 and 𝐿𝑖,𝑗(𝑘) Matrix

Source: Adapted from [1]

If we left multiplying a basis with 𝑇𝑖,𝑗, it will yield a new

basis with swapped 𝑖 and 𝑗 basis vectors. If we left

multiplying a basis with 𝐿𝑖,𝑗(𝑘), it will yield a new basis

with the 𝑗𝑡ℎ basis added k times to 𝑖𝑡ℎ basis. These two

transformations will be used in the Lenstra-Lenstra-Lovász

(LLL) algorithm.

The Lenstra-Lenstra-Lovász (LLL) algorithm starts with

taking the lattice basis and computing orthogonal basis

with Gram-Schmidt methods.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

{

𝑏𝑖
∗ = 𝑏𝑖 , 𝑖 = 1

𝑏𝑖
∗ = 𝑏𝑖 − ∑ 𝜇𝑖,𝑗𝑏𝑗

∗
𝑖−1

𝑗=1
, 1 < 𝑖 ≤ 𝑛

 𝜇𝑖,𝑗 =
(𝑏𝑖 , 𝑏𝑗

∗)

(𝑏𝑗
∗, 𝑏𝑗

∗)

With 𝑏𝑖
∗ is the orthogonal vector and 𝜇𝑖,𝑗 is the

coefficient.

After getting the orthogonal basis vectors, we can do the

LLL algorithm. The algorithm can be seen in Fig 2.8.

Figure 2.8 LLL Algorithm

(Source: Adapted from [1])

Notice there are two conditions to be fulfilled. The first

condition is size reduction. This condition related to the

basis vectors length that can be represented as |𝜇𝑖,𝑗| ≤
1

2
 for

all 𝑖 > 𝑗.

The second condition is Lovász condition, Lovász states

that lattice is reduced if (𝛿 − 𝜇𝑖+1,𝑖
2)||𝑏𝑖

∗||
2

≤ ||𝑏𝑖+1
∗ ||

2
 for

all 1 ≤ 𝑖 ≤ 𝑛 − 1, with 𝛿 ∈ (0.75, 1).

D. Minkowski’s Theorem

In 1889, Hermann Minkowski, A German

Mathematician, states that every convex set in n-

dimensional spaces (ℝn) that symmetric with the origin

coordinate and has volume greater than 2𝑛, contains a non-

zero integer points. This means that a Minkowski’s point

is in the infinite ℤ𝑛 space excluding its origin point.

Figure 2.9 A Minkowski’s set in 2-dimensional space

Source: (https://www.anyrgb.com/en-clipart-

2haql#google_vignette)

Later then, he introduces the extended version of the

theorem, Minkowski’s First Theorem. This theorem gives

an upper bound for the length of the shortest non-zero

vector.

First, we have to understand successive minima of a

lattice. Let n be the lattice’s rank, and L be a full-rank n-

dimensional lattice, for 𝑖 ∈ {1,2, … , 𝑛}, the 𝑖𝑡ℎ successive

minima of L (𝜆) is the smallest r so that L has i linearly

independent vectors of biggest length r. So, Minkowski, in

his first theorem, propose that:

𝜆(𝐿) ≤ √𝑛| det(𝐿) |
1
𝑛 … (9)

The example of this theorem can be seen in Fig 2.9.

Figure 2.10 Successive minima and shortest non-zero

vector of a lattice

(Source: Adapted from [1])

III. CRYPTOSYSTEM SCHEME

A. Encryption

The proposed encryption method begins with picking

some random p and q numbers (or two random prime

numbers) with 512 bits of size. Then, calculate N

(modulus) with eq. (1).

Notice that the size of N is very big (approximately 1024

bits of size), making it harder and challenging to compute

on the decryption process later.

After choosing p and q and calculating N value, the next

step is to calculate the Euler’s totient value with eq. (5). To

make it harder to decrypt, we will separate the plaintext

into two ciphertext and two public exponents (notice that

we will have two private keys and two ciphertext from this

scheme). Suppose we want to search for d1 (first private

key), e1 (first public exponent), d2 (second private key),

and e2 (second public exponent) values. First, take random

d1 value, but make it 0.16 times smaller than the N size (so

we have first private key with approximately 164 bits of

size), then pick random e1 values from 1 to Euler’s totient

value. After we get the d1 and e1 values, calculate ed1 with

these equations below:

𝑒𝑑1 = (𝑒1𝑑1) 𝑚𝑜𝑑 𝜑 … (10)

After that, take random d2 value, but make it 0.16 times

smaller than the N size (so we have first private key with

approximately 164 bits of size), then calculate e2 with

calculating factor from d2 and Euler’s totient value with

extended Euclidean algorithm (egcd). After getting the e2,

multiply it by (𝜑 + 1 − 𝑒𝑑1) 𝑚𝑜𝑑 𝜑. After we get the d2

and e2 values, calculate ed2 with these equations below:

𝑒𝑑2 = (𝑒2𝑑2) 𝑚𝑜𝑑 𝜑 … (11)

The next step, is to assert if the conditions shown below

is met:

https://www.anyrgb.com/en-clipart-2haql#google_vignette
https://www.anyrgb.com/en-clipart-2haql#google_vignette

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑 … (12)

If the conditions are met, the next step is to convert

plaintext to its ciphertext, we have two ciphertext here, c1

and c2. Calculate each ciphertext with eq. (2), after that, we

can share the N, e1, c1, e2, c2 to the receiver. More detailed

description provided in the implementation section.

B. Decryption

From the sender, we only get N, e1, c1, e2, c2 values,

and from the encryption process, we know that 𝑑1, 𝑑2 <

𝑁0.16, 𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑, and plaintext (m) with

𝑚 ≡ (𝑐1𝑑1𝑐2𝑑2) 𝑚𝑜𝑑 𝑁.

Because of its private key are small (d1 and d2 is small),

we can first assume that the vector produced is small and

we can use smallest vector problem. First, extend eq. (12)

first:

𝑒1𝑑1 + 𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 𝜑

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘𝜑

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘((𝑝 − 1)(𝑞 − 1))

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑝𝑞 − 𝑝 − 𝑞 + 1)

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑝𝑞 − (𝑝 + 𝑞) + 1)

𝑒1𝑑1 + 𝑒2𝑑2 = 1 + 𝑘(𝑁 − (𝑝 + 𝑞) + 1)

𝑒1𝑑1 + 𝑒2𝑑2 − 𝑘𝑁 = 1 + 𝑘(−(𝑝 + 𝑞) + 1) … (13)

From eq. (13), we can approximate each size of the

components. 𝑝, 𝑞 = 512 bits; N = 1024 bits; d = 164 bits; e

= 1024 bits; and k = 164 bits (from min(e,d)).

Because of smallest vector problem, we can use LLL

algorithm, first take 3 vector basis, the first basis is 𝑏1 =
(1,0, 𝑒1), the second basis is 𝑏2 = (0,1, 𝑒2), and the third

basis is 𝑏3 = (0,0, −𝑁). This basis is adapted from the eq.

(13) (or from the 𝑒1𝑑1 + 𝑒2𝑑2 − 𝑘𝑁 parts) and to keep

maintaining the bits size too.

After we take 3 basis, make the matrix representation of

it:

[
1 0 𝑒1

0 1 𝑒2

0 0 −𝑁

]

Check the matrix with Minkowski’s first theorem (eq.

9), we have 3-dimensional lattice, with |det(𝐿)| =

|(1)(1)(−𝑁)| = 𝑁, so we can approximate √𝑛| det(𝐿) |
1

𝑛

bits size, that is
|det(𝐿)| 𝑠𝑖𝑧𝑒

𝑛 𝑠𝑖𝑧𝑒
≈

1024

3
𝑏𝑖𝑡𝑠 ≈ 341 𝑏𝑖𝑡𝑠

So, the inequality becomes:

𝜆(𝐿) ≤ 341 𝑏𝑖𝑡𝑠 … (14)

The 𝜆(𝐿) value is the 1 + 𝑘(−(𝑝 + 𝑞) + 1) value, we

know that 𝑘 ≈ 164 bits and 𝑝 + 𝑞 ≈ 512 bits, so we can

approximate the 𝜆(𝐿), that is 676 bits. The inequality

becomes:

676 𝑏𝑖𝑡𝑠 ≤ 341 𝑏𝑖𝑡𝑠 … (15)

Which is false, so we have to scale the basis to make the

Minkowski’s first theorem conditions are met. Suppose

that we scale the basis with M, so the pre-LLL matrix will

be:

[
𝑀 0 𝑒1

0 𝑀 𝑒2

0 0 −𝑁

]

Check the matrix with Minkowski’s first theorem (eq.

9), we have 3-dimensional lattice, with |det(𝐿)| =
|(𝑀)(𝑀)(−𝑁)| = 𝑀2𝑁. Keep in mind that we have to

make the √𝑛| det(𝐿) |
1

𝑛 bits size is greater or equal than

676 bits. From this conditions, we can take 𝑀 = 2512 so

the M size is 512 bits, calculate the size for the

√𝑛| det(𝐿) |
1

𝑛, that is
|det(𝐿)| 𝑠𝑖𝑧𝑒

𝑛 𝑠𝑖𝑧𝑒
≈

512+512+1024

3
𝑏𝑖𝑡𝑠 ≈

2048

3
𝑏𝑖𝑡𝑠 ≈ 682 𝑏𝑖𝑡𝑠, which finally satisfies the

Minkowski’s conditions.

After getting the pre-LLL matrix, reduce it by the LLL

algorithm shown in Fig 2.8. After we get the reduced

lattice, calculate the d1 and d2 values from the first row,

the first value from the row is the d1 value and the second

value from the row is the d2 value, but don’t forget to

divide each d by M because we did scale the value by M

before.

Finally, we have all the value needed to decrypt the

ciphertext. Calculate the plaintext value using these

equivalencies below:

𝑚 ≡ (𝑐1𝑑1𝑐2𝑑2) 𝑚𝑜𝑑 𝑁 … (16)

Then, convert it to its string value to get the plaintext.

IV. IMPLEMENTATION

This program is developed using Python as its primary

programming language due to its simplicity and versatility

in mathematical processing. The libraries included are

Crypto.Util to help with RSA process, random to get the

random primes, and time to calculate the time taken to

encrypt or decrypt the message.

This program also developed using Sage as its

framework due to its efficiency and capability of handling

big numbers and its calculations. Several limitations have

been incorporated into the implementation to ensure its

feasibility. The limitations are it can’t be done if the

plaintext is too long due to the python constraints.

The source code of this program can be accessed in

appendix section.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

A. Encryption

Figure 4.1 Source code of egcd: encryption process

(Source: writer’s archive)

Figure 4.2 Source code of key generator: encryption

process

(Source: writer’s archive)

Figure 4.3 Source code of chunk processor: encryption

process

(Source: writer’s archive)

The encryption process is inspired by the SECCON

2020 CTF “sharsable problem”. This source code

implements the encryption process that had been

mentioned in the cryptosystem scheme. Additionally, it

incorporates an additional feature, chunk. Chunk used in

this process to make the decryption process more efficient

and avoid overflow when encrypting the plain text and

saved it to txt file. The idea is, when the plain text input is

more than 127 bytes, the program will separate it to

different chunks, so it will handle the overflow in the

process and make the decryption process more efficient.

B. Decryption

Figure 4.4 Source code of read file: decryption process

(Source: writer’s archive)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Figure 4.5 Source code of lattice basis reduction:

decryption process

(Source: writer’s archive)

Figure 4.6 Source code chunk decryption process

(Source: writer’s archive)

This source code implements the decryption process that

had been mentioned in the cryptosystem scheme.

Additionally, it incorporates an additional feature,

execution time. Execution time used in this process to

observe time changes corresponding to each test case

variation.

V. TEST AND RESULT

To test the implementation of the program, there would

be 3 test cases used: short text, medium text, and long text.

Table 5.1 Test Cases for Implementation

Parameters Filename

Test.txt Winter.txt Danger.txt

types short medium Long

chunks 1 2 4

Size of

number

searched

1024 bits 2048 bits 4096 bits

For the test cases and the result, it also attached in the

appendix section, the input file will be at the input folder.

To compare the time needed to decode from lattice

method, this paper used general number field sieve to

compare the time needed to decrypt the ciphertext, the code

used to calculate the sieve time is attached in the appendix

section.

This comparison is assumed we have computer that can

do 3 × 109 operations per core, with 1000 cores inside the

computer and with the program’s time complexity of

𝐿(𝑛) = 𝑒𝑥𝑝((𝑐 + 𝑜(1))(𝑙𝑛 𝑛)^(1/3)(𝑙𝑛 𝑙𝑛 𝑛)^(2/
3)). Furthermore, writer also calculate the improvements

from sieve to lattice methods. The formula to calculate the

improvements are
𝑠𝑖𝑒𝑣𝑒

𝑙𝑎𝑡𝑡𝑖𝑐𝑒
(𝑠𝑒𝑐𝑜𝑛𝑑𝑠).

Table 5.2 Results for Implementation

Filename Time-

Lattice

(seconds)

Time-Sieve

(seconds)

Improvement

(times)

Test.txt 0.10 4.39 × 1013 4.39 × 1014

Winter.txt 0.19 5.11 × 1022 5.79 × 1023

Danger.txt 0.35 4.30 × 1034 8.57 × 1034

Notice that if the plaintext gets longer, the time required

will also increase, the time required with sieve methods

will increase greatly, but the time required with lattice

methods is not. So, with lattice methods, we can efficiently

attack small private key RSA encryption in no time.

VI. CONCLUSION

With Lenstra-Lenstra-Lovász algorithm and

Minkowski’s theorem, we can simply attack RSA with

small private key, searching for its prime factors using the

reduced lattice form. LLL calculated the smallest possible

vectors to search for the possible private key value, and

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Minkowski’s first theorem make the bound for the LLL

computation, so we can efficiently find the right vectors.

With these methods, we can greatly reduce the time

required to decrypt the encrypted plaintext from years to

less than a seconds.

This study lays the groundwork for further development.

The current program developed is exclusively encrypt and

decrypt small size of text. Furthermore, the program's

limitation to certain file types, and plaintext size could be

broadened, allowing for more extensive file and text size

compatibility.

VII. APPENDIX

The program that used in this paper can be seen in this

link:

https://github.com/Nayekah/Lattice

VIII. ACKNOWLEDGMENT

All praise and gratitude belong to the Almighty God,

Allah Subhanahu wa Ta’ala, for his blessings and grace,

enable the writer to complete this paper. The writer also

giving sincere thanks to Dr. Ir. Rinaldi Munir, M.T., the

lecturer for the IF2123 - linear and geometrical algebra for

his guidance and kindness to the writer. And the writer also

appreciates for author’s families and friends for their

motivational support throughout the process of finishing

this paper.

REFERENCES

[1] Surin Joseph, C. Shaanan “A Gentle Tutorial for Lattice-Based

Cryptanalisis”, https://eprint.iacr.org/2023/032.pdf, 2023, accessed
31st January 2024, 18.33 UTC+7.

[2] Geeksforgeeks, “Symmetric Key Cryptography”,

https://www.geeksforgeeks.org/symmetric-key-cryptography/,
2024, accessed 31st January 2024, 14.24 UTC+7.

[3] Geeksforgeeks, “Asymmetric Key Cryptography”,
https://www.geeksforgeeks.org/asymmetric-key-cryptography/,

2024, accessed 31st January 2024, 14.24 UTC+7.

[4] JaneW, “Cryptosystem Model”,
https://uwillnvrknow.github.io/deCryptMe/pages/cryptosystem.ht

ml, 2024, accessed 31st January 2024, 13.33 UTC+7.

[5] M. Rinaldi, “Algoritma RSA”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-

2021/Algoritma-RSA-2020.pdf, 2020, accessed 31st January 2024,

16.07 UTC+7.
[6] D. Boneh, G. Durfee, “Cryptanalysis of RSA with Private Key d

Less than N0.292,” in Advances in Cryptology — EUROCRYPT ’99,

Ed. Berlin: Springer, 1999, pp. 1-11.
[7] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point

problem,” in Combinatorica, 6.1, Ed. New York: Springer, 1986,

pp. 1-13.
[8] R. Kannan, “Minkowski’s Convex Body Theorem and Integer

Programming,” in Mathematics of Operations Research, 12.3, Ed.

Online: Informs, 1987, pp. 415-440.

STATEMENT OF ORIGINALITY

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 02 January 2025

Nayaka Ghana Subrata

13523090

https://github.com/Nayekah/Lattice
https://eprint.iacr.org/2023/032.pdf
https://www.geeksforgeeks.org/symmetric-key-cryptography/
https://www.geeksforgeeks.org/asymmetric-key-cryptography/
https://uwillnvrknow.github.io/deCryptMe/pages/cryptosystem.html
https://uwillnvrknow.github.io/deCryptMe/pages/cryptosystem.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Algoritma-RSA-2020.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/2020-2021/Algoritma-RSA-2020.pdf

